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We review the existence results of traveling wave solutions to the reaction-diffu- 
sion equations with periodic diffusion iconvection) coefficients and combustion 
(bistable) nonlinearities. We prove that whenever traveling waves exist, the 
solutions of the initial value problem with either frontlike or pulselike data 
propagate with the constant effective speeds of traveling waves in all suitable 
directions. In the case of bistable nonlinearity and one space dimension, we give 
an example of nonexistence of traveling waves which causes "quenching" 
("localization") of wavefront propagation. Quenching (localization) only occurs 
when the variations of the media from their constant mean values are large 
enough. Our related numerical results also provide evidence for this 
phenomenon in the parameter regimes not covered by the analytical example. 
Finally, we comment on the role of the effective wave speeds in determining 
the effective wavefront equation (Hamilton-Jacobi equation) of the reaction- 
diffusion equations under the small-diffusion, fast-reaction limit with a formal 
geometric optics expansion. 

KEY WORDS: Reaction-diffusion eqvations; homogenization; traveling 
waves; maximum principle; Hamilton-Jacobi equations. 

1. I N T R O D U C T I O N  

In  this paper ,  we c o n s i d e r  the l o n g  t ime  a s y m p t o t i c  w a v e f r o n t  p r o p a g a t i o n  

o f  the  so lu t ions  o f  the fo l l owing  r eac t ion -d i f fus ion  ( R D )  e q u a t i o n s :  

u, = Vx  " (a(x)  V x u )  + b (x )  . V ~ u  + f ( u )  
(1.1) 

ul,=0=u0(x) 

u n d e r  the  f o l l o w i n g  a s s u m p t i o n s :  
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A1. a(x)=(aij(x)), x=(xl,x=,.. . ,x,)~R n is a smooth positive- 
definite matrix on R n, 1-periodic in each direction xi. 

A2. b(x) = (bj(x)) is a smooth divergence-free vector field, 1-periodic 
in each direction xi, and has mean equal to zero. 

A3. f(u) is either a combustion nonlinearity with ignition tem- 
perature cutoff, i.e., f(u)=O, ue[O,O], for some 0~(0,1) ,  f ( u ) > 0 ,  
uE(0,1),  f(1)---0, f(u)eCl[O, 1]; or a bistable nonlinearity, i.e., 
f(u) = u(1 - u)(u - ,u), for some/~ ~ (0, 1/2). 

We will remark on the case of the Lipschitz-continuous combustion- 
type nonlinearity later. The initial condition uo(x) is continuous and ranges 
between 0 and 1. 

Equations of the form (1.1) appear in the study of premixed flame 
propagation through turbulence, (1~ where u is the temperature of the com- 
bustible gas, b(x) is the prescribed turbulent incompressible fluid velocity 
field with zero ensemble mean, f(u) is the Arrhenius reaction term, and 
a(x) is taken as a constant matrix. Based on their formal asymptotic 
analysis in the large-activation-temperature limit, Clavin and Williams (1~ 
found that the temperature "profile" u propagates with effective turbulent 
flame speed. To understand the basic propagation features of solutions of 
(1.1) in inhomogeneous media from a rigorous analysis viewpoint, we 
consider both a(x) and b(x) to be periodic here. This is a special case of 
the general assumption that they are stationary ergodic random fields. We 
hope that our results in the periodic case will provide some insight into the 
more challenging random case. 

The random diffusion matrix a(x) arises in solute transport problems 
of hydrology, (11) where u is the concentration of the solute substance, b(x) 
is the steady incompressible fluid velocity with homogeneous statistics, and 
a(x) is the so-called pore-scale dispersion tensor. Equation (1.1) is thus 
general enough to relate to both of these applications above. 

The combustion nonlinearity we consider here is an approximation of 
the Arrhenius reaction with an ignition temperature cutoff, which is 
commonly used in the literature to avoid the so-called "cold boundary 
difficulty" (see, e.g., refs. 4 and 8). The bistable nonlinearity comes about 
as a result of chemical reactions of overall order 3. The other important 
nonlinearity (Kolmogorov-Petrovsky-Piskunov nonlinearity), e.g., f(u)= 
u ( 1 -  u) is due to second-order chemical reaction. (25'~7) 

Equation (1.1) with KPP nonlinearity was studied extensively by 
Freidlin, ~13) using large-deviation techniques. He treated the periodic case 
in any space dimension and the random case in one space dimension. 
As will be clear later, the long-time asymptotic behavior of solutions of 
Eq. (1.1) with combustion or bistable nonlinearity is governed by a dif- 
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ferent form of geometric optics than the exponential-type geometric optics 
in the KPP case, which is amenable to the large-deviation methods. 
Our approach begins with constructing special traveling wave solutions to 
(1.1) and deriving their basic properties, in particular, the monotonicity 
property. ~26-28) This is done by making use of maximum principle and 
applying the beautiful sliding domain techniques of Berestycki, Nirenberg, 
and  Li. (5-7'19) Then we use the traveling wave solutions to estimate the 
solutions of the initial value problem (1.1) by the maximum principle. This 
is carried out by extending the classical results of Fife and McLeod (t2) 
for the homogeneous bistable reaction-diffusion equation in one space 
dimension. Due to the presence of periodic coefficients in the problem, 
proving asymptotic stability of traveling waves in several space dimensions 
is very hard if not impossible. Motivated by the work of Aronson and 
Weinberger (1) and Freidlin, (13~ we instead focus on the wave speed in the 
long-time asymptotic wavefront propagation and ignore the more delicate 
problem of studying the wave profile. This is achieved by taking long-time 
limits of solutions along rays. In practice, the wave speed is also a more 
interesting and observable quantity than the wave profile. (23'29) We find 
that as long as traveling waves exist, the solutions of (1.1) propagate with 
the speeds of traveling waves even though they may not converge to the 
profiles of traveling waves, which is what one tries to study in the stability 
analysis. 

Traveling waves are shown to exist for Eq. (1.1) for general a(x) and 
b(x) under our earlier assumptions if f (u) is a combustion nonlinearity. (28) 
However, if f (u) is a bistable nonlinearity, then traveling waves in general 
exist only up to a certain level of variations of coefficients from their mean 
states. If traveling waves cease to exist, then there is no wave propagation, 
and the solutions are localized in space. In the combustion language, 
this is called "quenching." We illustrate the quenching phenomenon by 
both analytical and numerical examples. A related study on quenching in 
the one-dimensional bistable reaction-diffusion equation can be found in 
Pauwelussen, (2~ where the diffusion coefficient is a piecewise constant 
function with one jump at x = 0. If the jump is large enough, then traveling 
waves cannot pass the origin, and so quenching is referred to as wave 
blocking in ref. 20. We believe that quenching is a rather generic pheno- 
menon, which depends mainly on the degree of spatial inhomogeneity, and 
not on the specific form of coefficients, be they a piecewise constant 
function, a periodic function, or otherwise. Yet it is interesting to see this 
happen for smooth coefficients. 

The rest of the paper is organized as follows. In Section 2, we review 
the known existence results of traveling waves and their main properties. In 
Section 3, we construct subsolutions and supersolutions for solutions of 
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Eq. (1.1), using the traveling wave profiles, and establish the long-time 
asymptotic wavefront propagation (Theorem 3.1). In Section 4, we give an 
analytical example on quenching, using perturbation analysis. In Section 5, 
we present some numerical results illustrating quenching and its properties 
for different parameter regimes from that of Section 4. In Section 6, we 
show that long-time wavefront propagation is related to the large-space, 
large-time limit or homogenization limit of (1.1). Upon space-time 
rescaling, (1.1) is in the small-diffusion, fast-reaction form with rapidly 
oscillatory coefficients. We give a formal geometric optics expansion and 
derive the effective wavefront equation (the eikonal equation), which is a 
Hamilton-Jacobi equation with its Hamiltonian being the effective wave 
speed as a function of wave numbers (i.e., the dispersion relation). 

2. EXISTENCE, UNIQUENESS, AND MONOTONICITY 
OF TRAVELING WAVES 

We consider the traveling wave solutions of Eq. (t.1) of the form 
u(x, t ) =  U ( k . x - c t ,  x), where k is a constant vector in R n, and c is a 
unknown constant, the wave speed; U, as a function of s = k .  x - c t  and 
y = x, satisfies the boundary conditions U ( -  ~ ,  y) = 0, U(+  ~ ,  y) = 1, 
and U(s, .) has period 1. Upon substitution into Eq. (1.1), we obtain the 
following equation for U =  U(s, y)  and c: 

(kOs + Vy)[a(y)(kas + Vy) U] + b(y)  . (kO, + Vy) U + cUs + f (  U) = 0 

U ( - o %  y)=O,  U(+o% y ) =  1, U(s, .) has period 1 (2.1) 

Equation (2.1) is a degenerate elliptic equation on the infinite cylinder 
R l x  T n, T n being the n-dimensional unit torus. We have the following 
results. 

Theorem 2.1 (Existence, Combustion Case). Under assumptions 
A1-A3 and that f ' ( 1 )  <0 ,  there exist classical solutions (U(s, y ) , c )  of 
Eq. (2.1) satisfying all the boundary conditions and such that 

0 <  U <  1, V(s, y ) ~ R  1 x T n (2.2) 

Us>0 ,  V(s, y ) ~ R I •  n (2.3) 

c < 0 (2.4) 

For a proof, see Xin. (28) 
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T h eorem 2.2 (Existence, Bistable Case). Let a=~T .a (x )dx ,  and 
assume that A1-A3 are valid. There is a positive number 6~r such that if 

I[a(x) - dt[ n~(T,) < 6 ,  and I[b(x)l[m(TO) < 6cr 

where s = s ( n ) > n +  1, then there exist classical solutions (U(s, y), c) of 
Eq. (2.1) satisfying all the boundary conditions (2.2)-(2.4). 

Proof. By Xin, (26) there is 6 > 0  such that if 

I la(x)-d[Im<6,  IIb(x)llH~<6 

then Eq. (2.1) admits classical solutions. Following Xin, <28) the set 6 > 0 for 
which solutions of (2.1) exist is open. So there exists a critical value 6~r 
such that if 6 < 6~, classical solutions exist. The rest of the theorem can be 
proved as in Xin. ~27) 

T h eorem  2.3 (Monotonicity and Uniqueness). Under assumptions 
A1-A3 and t h a t f ' ( 1 ) < 0 ,  any classical solutions (U, c) satisfy (2.2)-(2.4). 
Moreover, if (U',c') is another classical solution, then c '=c  and 
U'(s, y ) =  U(s + So, y) for some So e R 1. 

We refer to Xin (27) for a proof. 

Remark 2.1. By Theorems 2.1-2.3, the wave speed c is a well- 
defined function of wave vector k, i.e., c = e(k). A simple scaling argument 
shows that c ( , k )=~c(k )  for any ~>0 .  Thus c(k) is homogeneous of 
degree 1. It is also not hard to show that under A1-A3, c = c(k) ~ C(Rn). 
This relation between c and k is often called the dispersion relation. 

Following Proposition 1.l in Xin, (28) we have: 

Propos i t ion  2.1. 
Then any classical solution (U, c) of Eq. (2.1) satisfies: 

0 <  U <~ Ce ;~s, Vs <~ sl 

O < I - U <~ Ce - ~, Vs >~ s2 

0 < U~ <~ Ce-~l~J, V ]sl >~ s3 

for some positive constants C, - s l ,  s2, s3, and 2. 

Assume that A1-A3 hold and that f ' ( 1 ) < 0 .  

(2.5) 

(2.6) 

(2.7) 

3. L A R G E - T I M E  W A V E F R O N T  P R O P A G A T I O N  

In this section, we construct subsolutions and supersolutions for 
Eq. (1.1), using traveling wave solutions as described in Section2. The 
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basic idea goes back to Fife and McLeod (~2) and their Lemmas 4.1 and 6.1. 
The wavefront propagation will then follow directly from the subsolutions 
and supersolutions. We first treat the bistable case. Due to the mono- 
tonicity of traveling waves, the construction in ref. 12 carries through with 
minor modifications�9 We give all the details for the sake of completeness. 
Then we discuss the combustion case, where several new arguments have 
to be presented, and some more restrictions on the initial data are required. 

Proposi t ion 3.1 (Frontlike Data). Consider Eq. (1.1) w i t h f ( u ) =  
u(l -u)(u-#) ,  # e ( 0 ,  1/2), and initial data 0~<Uo~<l. Assume that the 
traveling wave solutions exist. Let k be a unit vector in R ~, and define 

Suppose that 

S= {y~ R~[ y= x - ( k .  x) k, Vx~ R"} 

uniformly in S. 
i = 1, 2, such that 

lira sup Uo(X) < #  (3.1) 
k . x  ~ --co 

lim inf uo(x) > # (3.2) 
k- x ~ q-cz3 

Then there exist smooth functions r r q~=q~(t), 

U(k.x-c(k)  t -~. l ,x)-ql<~u(t ,x)4U(k.x-c(k) t+~2,  x)+q2 (3.3) 

where for i =  1, 2, 

~'i(t) > 0, ~ ( t )  > 0, sup I~/(t)[ < -t-~ (3.4) 
t > O  

qe(t) is nonincreasing in t and = O(e -r ')  (3.5) q f i t )>0 ,  

as t ~ +0% for some ~ >0.  Here, prime means time derivative. 

ProoL 
that if k�9 then uo(x)># .  Choose qt(O,x)=_q] n, so 
I~< 1 -q';"<Uo(X), if k.x>~Xo. Thus for any ~ =- r we have 

w(/c x -  r x) m ,, �9 - q l  ~< l - -q1  < U o ( X )  

if k.  x >~ Xo. If k- x ~< Xo, 3X1 > O, X~ -- XI(Xo), such that if ~" ~> X~, 

V ( k  . x - -  ~'~, x )  ~ U ( X  0 - -  X l ,  x )  ~ q]" 

Combining the above, we have 

v ( k .  x -  ~'~, x) - q~ ~ ~o(X) 

Let us construct subsolution first. By (3.2), 3J(o>0 such 
that 

(3.6) 
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Let ul =- U ( k . x - c t - r  where r ~(t)>0,  and 
0 < q(t)<~ q~. We will derive the equations for ~(t) and q(t) so that (3.4) 
and (3.5) hold and ut is a subsolution. Define 

U [ u ]  = u , -  Vx .  (a(x)  Vxu) - b(x)  . Vxu  - f ( u )  (3.7) 

and let s = k .  x - ct - ~(t) and y = x when differentiating U. Using Eq. (2.1) 
for the traveling wave profile, we have 

NEut-I = [ - c - ~'(t)] Us - q, - Vx- Ea(x)(kc~ s + Vy) U] 

+V~- [a (x )V~q]  - b ( x )  . (kc~s + Vy) U + b(x)  . V ~ q -  f ( U - q )  

= I - c -  ~'(t)] U ~ - q t - ( k O ~ + V y ) .  [a(y)(kc~s+Vy) U]ly=~ 

+V~.  [a(x)  V~q] - b ( y )  . (kO~ + Vy) Ul y_~ 

+ b ( x )  . V ~ q - f ( U - q )  

= - ~ ' ( t )  U ~ - q , + f ( U ) - f ( U - q )  (3.8) 

Since q e [0, q]n] a n d f ' ( 1 ) <  0, there exists 6 > 0 such that if U e [1, 1 - h i ,  
f ( U )  - f ( U -  q) <<. ~q for some ~ < 0, depending only on f Similarly, since 
f ' (0 )  < 0, there exists 6 ' >  0 such that for U ~ [0, 6' ], f ( U ) -  f ( U - q )  ~< ~'q, 
Vq e [0, in ql ], for some ~' < 0, depending only on f 

Now for U~ El, 1 - 6 ] ,  

N[u , ]  ~ - r  U s - q, + ~q (3.9) 

and for U~ [0, 6'] we have the same inequality with a replaced by c(. For 
U~ [6', 1 - 6 ] ,  due to monotonicity of U a n d f E  C 1, we get 

Us~>fl>0, f ( U ) - f ( U - q ) ~ K q  

for some fl > 0, K > 0. Note that the inequality Us/> fi > 0 is not true for all 
(x, t). Since Us ~ 0 if and only if U ~  0 or U ~  1, this inequality only holds 
for those (x, t) such that U =  U(x, t) stay away from 0 and 1. Here we 
restrict U~ [6', 1 - 6 ] .  

Let us choose q(t, x )  to satisfy 

qt = --Tq 

q],=0----qlin 

where --7 = max(a, ~') < 0. Thus 

(3.10) 

0 < q(t) <~ql -~t 
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It follows from (3.8) that 

N[u,] <~ -~ ' ( t )  fl + 7q + Kq 

Let us choose 

(3.11) 

~'(t) = (K+  y) q(t), 4(0) = ~ (3.12) 

Then ~(t) and q(t, x) are as desired in (3.4) and (3.5). We see from 
(3.9)-(3.12) that with above choice of ~ and q, N[ul] <~0, and ut is a 
subsolution. The construction of the supersolution is similar. The proof is 
complete. 

Proposition 3.2 (Pulselike data). Consider Eq. (1.1) with f ( u ) - -  
u ( 1 - u ) ( u - # ) ,  # e ( 0 ,  1), and the initial data Uo(X ), 0~<u0(x)~<l; and 
assume that traveling wave solutions U(k. x -  c(k) t, x) exist. Suppose that 
uo(x ) satisfies 

lira sup Uo(X) < # uniformly in S (3.13) 
I k - x l  ~ + ~  

Uo(X)>#+t /  for I k ' x l < L  (3.14) 

where t/ and L are positive constants. Then there exists Lo = Lo(t/) such 
that if L ~> Lo, there are smooth functions ~i(t), qi(t), i-- 1, 2, so that 

u+ (k. x -  c(k) t -  ~(t), x) + U_ ( - k .  x -  c ( - k )  t -  ~(t), x ) -  1 -q~(t) 

<~ u(t, x) <~ U+(k.  x -  c(k) t + ~2(t), x) 

+ U _ ( - k  . x -  c ( - k )  t+  ~(t) ,  x ) -  1 + q2(t) (3.15) 

for all t/> 0. The subscripts + and - denote waves going along forward 
(or k) and backward (or - k )  directions, respectively. Moreover, we have 
for i =  1,2 

( - i ) i ~ i ( t ) > 0 ,  ~';(t) > 0, sup [r < +0o (3.16) 
t > - O  

qi(t) > O, qi(t) is nonincreasing in t and of O(e -~') (3.17) 

as t--, +a~, for some y > 0 .  

Proof Let us first construct the inequality (3.15), then fit it to the 
initial data. By (3.13) and Proposition 3.1, we get 

u(x, t) <~ U+(k.  x -  c(k) t + el(t), x) + q+(t) (3.18) 
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and applying the same argument to u ( - x ,  t), we get 

u ( x , t ) < ~ U  ( - k . x - c ( - k )  t+c~2( t ) , x )+q~- ( t )  (3.19) 

where ei, i =  1, 2, q~, and q{ are like the corresponding functions in (3.4) 
and (3.5). If k . x >  0, then Proposition 2.1 implies that 

1 -- U+ (k .  x - c(k)  t + ~l(t),  x )  <~ 1 - U+ ( - c(k) t + ~l(t), X) ~ Ke ;'c(k)t 

(3.20) 

for some K > 0 ,  2 > 0 .  So by (3.19) and that c (k )<0  for all unit vectors 
k ~ R n, we have 

u(x, t) ~ U _ ( - k .  x - c ( - k )  t + ~2(t), x ) +  U +(k .  x - c ( k )  t + ~l(t),  x)  

-- 1 + Ke ~(k)t + qF( t )  

~< U_ ( - k - x -  c ( - k )  t + ~2(t), x)  + U+ (k .  x -  c(k)  t + ~2(t), x) 

- 1 + q2(t) (3.21) 

where q2( t )= Ke~C(k)t+ q [ ( t )  and ~2(t)= max(cq(t), c~2(t)} are as required 
in (3.16) and (3.17). If k-x~<0, with U_ replacing U+ in (3.20) and (3.18) 
replacing (3.19), we arrive at a similar inequality as (3.21). In any case, we 
end up with the right-hand inequality in (3.15). 

To get the left-hand inequality, consider 

u l -  U +(k .  x - c ( k )  t - p ( t ) ,  x)  + U _ ( - k .  x - c ( - k )  t - p ( t ) ,  x ) -  1 - q ( t )  

(3.22) 

for some functions p and q as described in (3.16) and (3.17) with i =  1. 
Then 

N [ u l ]  = ul, t -  Vx . (a(x)  Vxul)  - b(x)  . Vxu l - -  f ( u l )  

= - p ' ( t ) ( U + , s +  U _ , s ) - q t  

+ f ( U + ) + f ( U _ ) - f ( U +  + U_ - 1 - q )  (3.23) 

If k- x > 0, then, by (3.20), 

1 - U+ (k-  x -  c(k)  t -  p(t) ,  x )  <~ 1 - U+ ( -  c(k)  t - p(t) ,  x )  

<~ Ke~.(c(k), + p(t)), 2 > 0 (3.24) 

We will make q ( t ) ~ q ( O ) < ~ l - l t - t  1. So if - p ( t )  is large enough, 
0 ~ < l - U + + q ~ < q l  for all t/>0, where q 1 = 1 - # - t / / 2 -  There exists a 
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small 6 > 0, depending only on f ,  so that if U ~ [-0, 6 ], or U ~ [ 1 - 6, 1 ], 
then 

f ( U _ ) - f ( U _ - ( 1 - U + + q ) ) < ~  - ] 2 a ( l -  U+ + q )  (3.25) 

for some ]2a > O. It follows that 

while 

N[uz] <~ -p'(t)(U +,s+ U_.s ) -q t+ f ( U  +)-]21(1 + q -  U +) (3.26) 

f ( u  + )<.]22(1-  u + ) (3.27) 

U_,s>~fl 

f ( U _ ) -  f ( U  - ( l + q - U + ) ) ~ < C 2 ( l + q - W + )  

From (3.24) and (3.27) we also have that  

f (  U + ) <~ C3 e-;'lc(k)t + p(t)l 

~<0 

if -p( t )  is large enough. Suppose now 
positive constants fl, C 2 such that 

(3.30) 

U_ E [6, 1 - 6 ] ;  then there exist 

for some ]22 > 0. Thus, we get by (3.24), 

U[u,] <<. -p ' ( t ) (U +,~ + U_.~)-q,  

+ (]22 - ]21)(1 - U+ ) - ]2a q 

]]22 --]21[ Ke;C(c(k)t + P(t))--  q t -  ]21q (3.28) 

Now let q satisfy the following equation: 

qt = -]2oq (3.29) 

where 0<]2o < m i n { # a ,  ]2c(k)[ }. The function q then satisfies (3.17) and 
that 

0 <~ q(t) <~ (1 -- ]2 - r/) e-~~ 

It follows from (3.28) and (3.29) that for some constant  C1 > 0  

N[ul] ~ e'~p(t)K I]22 --]211 e;'C(k)~ -- C1 e-mr 

<~ ( e~p(t)K I]22-- ]21] -- Ca) e-U~ 
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for some constant C3 > 0. It follows from (3.23) that 

N[  u~] ~ - p '  ( t ) fi + #oq + C3e .~lc(k)t + p(t)l _[_ C2(1 + q -  U+) 

<~ -p ' ( t )  fl + C4q -ff C4 e-'~lc(k)t+p(t)l 

<~ -p ' ( t )  fi + C4 Cl e-~~ + C4e2c(k)t 

<~ - p ' ( t ) f l +  C4(C1 + 1) e -"~ (3.31) 

where C4 is some positive constant. Now choose p(t) to satisfy 

p'(t) C4(C1 "[- 1 ) e-"~ (3.32) 

and p(0) is sufficiently negative. Then p'(t) > 0 and p(t) is also sufficiently 
negative for all t >/0. Combining the above arguments, we have shown that 
for k .  x > 0, uj is a subsolution with p and q given in (3.29) and (3.32). The 
case k- x ~< 0 is similar, and we just need to switch everywhere from U+ to 
U .  If we call the larger of the p's and q's obtained in the two cases ~ and 
ql, then we have shown the left-hand inequality in (3.15). 

Finally, we fit (3.15) to the initial data. The right-hand side, being 
deduced from Proposition 3.1, is no problem. For the left-hand side, at 
t = 0 ,  if Ik.xl  <<,L, we have by (3.14) that 

U + ( k . X - ~ l ( O ) ,  x)-~- U ( - k . x - ~ l ( O ) ,  x ) -  1 - ql(O) 

<~ t- -ql (O)<~g+tl<uo(x)  

where we chose ql(O)~ q~ = 1 - p - I / f o r  all x. If [k. xl > M =  M(~I(O), r/), 
we have 

U+ + U  1 1 in " - - q ~ ( O )  <~ 2ql - -  q'~ < 0 <~ Uo(X) (3.33) 

Thus if L >~ L o --- M(~I(0), t/), (3.15) holds for all t >~ 0. We finish the proof. 
Before presenting the results for the combustion case, we first show the 

following lemmas. 

Lemrna 3.1. Consider the Cauchy problem of the following linear 
parabolic equation: 

u, =Vx" (a(x) Vxu) + b(x) . Vxu, 

ult=o = Uo(X) 

x E R  n 
(3.34) 
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where Uo(X)sL2c~L~(Rn), and is continuous; a(x), b(x) are smooth, 
uniformly bounded, and a(x) is positive definite (uniformly bounded away 
from zero). Then 

lim Ilu(t, x ) l lL~ t~~  (3.35) 
t ~ c ~  

,Drool Existence of bounded smooth solutions of Eq. (3.34) is 
standard, and they can be represented by the fundamental solution of 
(3.34), denoted by F(t, x, y), as 

u(t, x) = fR" F(t, x, y) uo(y) dy (3.36) 

where F(t, x, y) >>. 0 is continuous in t, x, y, and satisfies the estimate 

r ( t ,  x, y) <~ Mt n/2 exp -- ~ tlx -- Yll 2 (3.37) 

for some positive constants M and c~ depending only on the coefficients 
a(x) and b(x). In (3.37), I1' II is the usual Euclidean distance in R n. For 
details on the existence of F(t, x, y), its construction, and the estimate 
(3.37), we refer to Friedman (~6) and Varadhan. (24) It follows from (3.36) 
and (3.37) that 

lu(t,x)l<~M t - n / ~ e x p  - ~ l l x - y l l  2 luo(Y)ldy (3.38) 

We notice that the right-hand side of (3.38) is, up to a multiplicative 
constant, just a solution of a usual heat equation with constant diffusion 
coefficients and initial data luo(Y)l. By a straightforward Fourier analysis 
of the heat equation with LZ(R n) initial data, one sees that the solution 
decays to zero in L ~ via L 2 decay and Sobolev imbedding thanks to the 
parabolic regularity. We finish the proof by applying inequality (3.38). 

I . emma 3.2. Consider the solution u(t,x) of Eq. (3.34) and the 
assumptions on a(x) and b(x) there; however, Uo = Uo(Xl ) �9 LZ(R 1) c~ L~(R 1 ) 
and is continuous in x~. Then 

lim Ilu(t, X)IIL~<R.) : 0 (3.39) 
I ---~ oo  

Proof. Due to Uo = Uo(Xl), inequality (3.37) can be simplified to 

lu(t,x)l~<M1 x t - m e x p  - ~ ( x l -  y~)2 luo(yl)l dy~ (3.40) 
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for some constant M~ > 0. The right-hand side of inequality (3.40) decays 
to zero in L~(R~), which implies (3.39). The proof is complete. 

Lemma 3.3. Consider the Cauchy problem of the equation 

u, = V:,. (a(x) Vxu) + b(x) . Vx u + ee-~'~ x) 

u l , : o  = Uo(X) 
(3.41) 

where a(x) and b(x) are as in Lemmas 3.1 and 3.2; 70 is a positive constant; 
e E(0, 1), a positive constant; fo(s)=e -~~ for some constant 7o>0; k is 
any unit vector in R';  k .  x is the inner product of k and x; and Uo(X) is as 
in Lemma 3.1 or 3.2. Then 

lim Ilu(t, X)IIL=(R./= 0 (3.42) 
t ~ o o  

and 

Ilu(t, x)IIL~(R.~ ~< IlUo(X)llL~R.)+eMc(ao), Vt~>0 (3.43) 

where M is the constant in (3.38), depending only on the fundamental 
solution, and C(ao) = aol(2rC/ao) "/2- 

Proof. Solutions of Eq. (3.41) can be written as 

u(t, x) = fRn r(t, X, y) Uo(y ) dy 

+ e F(t - s, x, y) e-~~ y) dy ds 
n 

(3.44) 

= fR. r(t, x, y) Uo(y) dy 

+e fo' ds e -~~ s) fR F(s ' x, y)So(k, y)dy (3.45) 

where the first integral decays to zero uniformly in x as t-* 0% by 
Lemma 3.1 or 3.2. The inner layer integral of the second term can be 
estimated using (3.37), to yield 

fR~ F(s, x, y) fo(k" y) dy 

% Yll 2) fo(k" y) dy <~ Ms-"/2 fR exp (--  ~ ,lx-- (3.46) 

822/73/5-6-7 
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Making the change of variables inside the right-hand side integral in (3.46) 
by letting r = Qy, ~ = k . y ,  where Q is an orthogonal matrix with k as a 
first row vector, we get 

__ 0~0 2 t s' Lex. (  ll - ll 

= s -"/2 . exp  - ~ [ IOx- r  2 fo(~)d~ 

= exp - ( k . x -  ~1) 2 \ ~ o /  , ~s fo(~ 1) d~l 

= fi(s) (3.47) 

where /~(s) is a positive function, ~(s)<~(2~/~o) "/2 [[f01lL~, /~(s)--*0, as 
s ~  + ~ .  Thus the second integral in (3.45) is bourided up to a factor of 
M by 

odS e -s~ s)fi(s) ds 

f ,12 f, = ds e -  ~~ - s)B(s) + e-~oo-s)B(s) ds 
"0 /2 

~ . 2 ~ .  n/2 IlfoNL~ e -~~ 
\ ~0 / /2 

f t/2 
+ sup fl(s) e - ~ ~  (3.48) 

sE [t/2, t] 'JO 

as t ~ ~ ,  from which (3.42) follows. Combining (3.45)-(3.47), we obtain 
(3.43). The proof is complete. 

Below, we construct subsolutions and supersolutions for the combus- 
tion case. 

First, we have: 

Proposi t ion 3.3. (Frontlike Data). Consider Eq. (1.1) with com- 
bustion nonlinearity (see A3), f ' ( 1 ) < 0 ,  and initial data Uo(X), O<~uo<~ 1. 
Let k be a unit vector in R n, and define 

S =  { y e R "  [ y = x -  ( k . x )  k, V x e R " }  (3.49) 
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Suppose that  

lira Uo(X) = 0 uniformly in S 
k . . . . .  (3.50) 

Uo(X) X( - 0% O)(k. x) ~ L2(R~.x) uniformly in S 

lim Uo(X) = 1 uniformly in S 
k .x~  +o~ (3.51) 

[ 1 - -  Uo(X)] Z~o,+~ (k 'x )~LZ(R~.x)  uniformly in S 

Then  there exist smooth  functions ~i = ~i(t), qi = q~(t, x), i = 1, 2, such that  

U ( k . x - c ( k )  t - r  <~u(t,x)<~ U ( k . x - c ( k ) t + ~ 2 ,  x )+q2 (3.52) 

where for i =  1, 2, 

~;(t) > 0, ~i(t) > 0, ~e(t) = o(t) (3.53) 

q~(t, x) > O, rlqilXc~(R,,) is nonincreasing in t and = o(1) (3.54) 

a s  t ---r ~ .  

ProoL Let us consider a subsolution. By (3.51), 3Xo > 0, if k - x / >  X o, 
then there is a function 

qo = qo(k. x) 

qo(k. x) Z(Xo, + ~)(k. x) e L2(R 1.x) 

O < q o < l - O - e ,  e e ( 0 ,  1 - 0 / 2 )  

such that  Uo ~> 1 - qo(k. x). It  follows that  Uo(X ) >>. U(k. x -  ~o, x) - qo(k. x) 
for any ~o. Fo r  k .  x e ( -  ~ ,  Xo), choose ~o/> XI = X~(Xo) > 0 such that  

U(k. x -  ~o, x) <~ C e x p ( - 2  [k. x -  r 

V k . x e ( - o % X o ) ,  by Propos i t ion2 .1 .  It  is easy to define qo(k.x)  for 
k . x e ( - ~ , X o )  such that  qoeL~nL~ O < q o < l - O - e ,  and 
qo(k. x) >1 U(k. x -  ~o, x). Thus, 

U(k . x -  ~o, x) - qo(k " x) <~ 0 <~ Uo(X) 

on k .  x e ( -  ~ ,  Xo). For  the above  ~o and qo, we have 

U(k. x - ~o, x) - qo(k. x) <~ Uo(X) 

o n  R n. 
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Now consider the function 

ut =-- U(k. x -  c(k) t -  r x) - q~(t, x) 

where ~1 and q~ will be chosen as in (3.53) and (3.54). We then have 

N[ul] = ul , , -  Vx . (a(x) Vxu~) - b(x) . V x u t -  f(ut) 

= -~'l(t) U,-qt , t+Vx-(a(x)Vxq~)  

b ( x ) .  V x q  1 + f ( U )  - f (  U - ql)  (3 .55)  

There exists 6 s (0, 0) small so that if q e [0, 1 -  0 -  e] and U e [ 1 -  6, 1], 
then 

f (U)<~ f (U-q )  

Since 0 ~< q ~< q0 < 1 - 0 - s, we have for U e [ 1 - 6, 1 ] 

N[u~]<~ -~',(t) U~-q: , t+Vx.(a(x)V~q~)+b(x) .V~q ~ (3.56) 

If Ue  [0, 6], then f ( U ) = f ( U - q l ) = O ,  so (3.56) holds with the equality 
sign. If U~(6,  1 - 6 ) ,  3 3 > 0  such that U,~>/3 and ] f ( U ) - f ( U - q ~ ) ]  <~Kq~ 
for some K >  0. It follows that 

N[ut]<~ -~ '13-q,~+Vx.(a(x)V~q~)+b(x) .V~q~+Kq~ (3.57) 

Let us choose ql to satisfy the equation 

ql, t = Vx" (a(x)  V x q l )  + b(x)  . V~q~ 

ql  I t=o = qo(k" x )  (3 .58)  

T o  make ut a subsolution, we just need to impose that 

- ~ i f l +  gq~ <~O or --~'~fl+ KIIq~IIL~(R.)=O 

o r  

~i - K tlql II L~(~-~ > 0 (3.59) 
B 

with r ~o>0.  Lemma 3.2 implies that [IqlllL~=o(1) as t ~  ~ .  So 
~ l ( t )  = O(t). We showed that ul is a subsolution, and a supersolution can be 
constructed in a similar way. We complete the proof. 
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P r o p o s i t i o n  3.4 (Pulselike Data). Consider Eq. (1.1) with com- 
bustion nonlinearity (see A2), f ' ( 1 ) < 0 ,  and the initial data Up, 
0 <<. Up(X) ~< 1. Suppose that for some unit vector k e R", Up satisfies 

lim Up(X) =0 Uo(X)sL2(R~.x), uniformly in S (3.60) 

Up(X) > 0 + t/ for [k. xl ~< L (3.61) 

where r/~ (0, 1 - 0 ) ,  L > 0 ,  and S is that of (3.49). Then 3Lo=Lo(q,f)  so 
that if L i> Lo, there are smooth functions ~i = r q~ = qi(t, x), i= 1, 2, 
such that 

U + ( k . x - c ( k )  t - ~ l , x ) + U  ( - k . x - c ( - k )  t - ~ , x ) - l - q l  

<<. u(t, x)<~ U + ( k . x - c ( k )  t+ ~2, x) 

+ U_ ( - k- x - c( - k) t + 42, x) - 1 + q2 (3.62) 

for all t ~> O. The subscripts + a n d -  denote the waves going along forward 
(k) and backward ( - k )  directions, respectively. Moreover, we have for 
i = 1 , 2  

( -1) i~i (O)>O,  ~(t)  > O, I~i(t)[ =o( t )  (3,63) 

qi(t, x) > O, Ilqi(t, x)F[L| o(1) (3.64) 

a s  t --~ 00 .  

Proof. Along direction k, by (3.60) and Proposition 3.3, we have that 

u(x,t)<~ U + ( k . x - c ( k ) t + ~ + ( t ) , x ) + q f ( t , x )  (3.65) 

where r and q2 ~ are as in (3.53) and (3.54) with i =  2. Applying the same 2 

argument to u ( - x ,  t) gives 

u(x,t)<~ U ( - k . x - c ( - k )  t + ~ ( t ) , x ) + q z ( t , x )  (3.66) 

where r and q2 are similar to r and q+. If k .  x > 0, then 

1 -  U + ( k . x - c ( k )  t+ + ~2 (t),x)<<.Kexp[-2 Ic(k) tJ] (3.67) 

for some K > 0 ,  2>0 .  Combining (3.66) and (3.67), we have 

u(x, t) <<. U_ ( - k .  x -  c ( - k )  t + ~ (t), x) + U+ (k. x -  c(k) t + ~ (t), x) 

- 1 + K e x p [ - 2  Ic(k) tl] + qz(t, x) (3.68) 
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which implies the right-hand inequality of (3.62) if we choose 

~2(t) ~> max(~-(t) ,  r 

and 

Xin 

qz( t, x ) =  Kexp[ - -2  Ic(k) t13 + q~ ( t, x) 

A similar inequality holds if k- x ~< 0. Combining the two cases, and adjust- 
ing 42 and q2 if necessary, we end up with the right-hand inequality of 
(3.62). For the left-hand inequality, consider the function 

u l -  U+(k . x - c ( k )  t - p ( t ) ,  x ) +  U _ ( - k  . x - c ( - k )  

x t - p ( t ) ,  x ) -  1 - q ( t ,  x) (3.69) 

where p and q are as in (3.63) and (3.64) with i=  1,-p(0)>> 1, and 
0 < q(t, x) ~< 1 - 0 - r//2, for all t and x. Direct calculation shows that 

N[u,]  = - p ' (  t)( U+,s + U_,s) - qt + Vx.  (a(x) W~q) + b(x).  V~q 

+ f (U+ ) + f ( U _  ) - f ( U +  + U_ - 1 - q) (3.70) 

where we ignore the arguments of the functions. If k .  x > 0, let q satisfy the 
equation 

qt = Vx " (a(x) Vxq) + b(x) . Vxq + ~ e x p ( -  ~0 t -  y [k. xl) 
(3.71) 

q I,= o = q(0, x) 

where ~o=2  ]c(k)l/2, 2 > 0  being the decay rate of U+ near positive 
infinity, y ~ (2/2, 2). Choose Ilq(0, x)]lc~ <~ 1 - 0 - r/. By Lemma 3.3, if s is 
small enough, then IIq(t, x)IIL~(R~ 1 -  0 - r / / 2  for all t >t0. The function 
p(t) is to be determined so that 

- p ( t )  -- c(k) t >t - c ( k )  t/2 + m, Vt >~ 0 (3.72) 

where m is a positive number as large as we please. Suppose this is done; 
then 

k .  c -  c(k) t -  p(t) >~ - c ( k )  t -  p(t) >> 1 

There exists a positive constant C, independent of p(t), such that 

1 - U + ( k . x - c ( k )  t - p ( t ) , x ) < ~ C e x p { - 2 [ k . x - c ( k ) t - p ( t ) ] }  (3.73) 
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for all t and x. Below, we will use C as a generic constant independent of 
p(t). If m is large enough, it follows that 

0~< 1 -  U+ +q~< 1 - 0  - t /  (3.74) 
4 

Suppose U_ e [0, 0); then 

. f(U ) = f ( U +  + U - 1 - q ) = f ( U  - ( i  - U+ + q ) ) = 0  

N[ut]  <. - p ' ( t ) ( U  +.~ + U _ , ~ ) - q t  

+ V~. (a(x) V~q) + b(x) .  Vx q + f (U+ ) (3.75) 

while 

Thus, 

f ( U + ) < < . C ( 1 - U + ) < ~ C e x p { - ~ [ k . x - c ( k ) t - p ( t ) ] }  (3.76) 

N[u,]  <~ - p ' ( t ) ( U  +,s + U=,s) - q, + Vx" (a(x) Vxq) 

+ b ( x ) ' V x q  + Cexp{ - 2 [ k - x -  c(k) t - p(t)3 } 

<~ - q t  +Vx" (a(x) Vxq ) + b(x) . Vxq 

+ C exp{ - 2 [ k - x -  c(k) t -  p(t)] } 

There exists 6 small enough so that if U e [ i - 6, t ], then 

f ( U _ ) - f ( U  -q)<~O for 

Suppose that U_ ~ [ 1 - 5 ,  1], then by (3.74) 

4 

(3.77) 

f ( U  ) - f ( U +  + U_ - 1 -  q) = f ( U _ ) - f ( U _  - (1 + q -  U+)) ~<0 

which implies that 

N[u~] <~ - p ' (  t)( V +.s + V_ ~) - q~ + Vx . (a(x) Vxq) + b(x) . Vxq + f (  U + ) 

(3.78) 

which is just like (3.75), and so (3.77) holds also. 
Now suppose U_ ~ [0, 1 - 5 ) ;  then 3fl>0, such that U_s>~fl>O, and 

(3.70) gives 
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N[ul] <~ --p'(t) fl -- qt + Vx. (a(x) Vxq) + b(x) . Vxq 

+f (U+ ) + f ( U _ )  - f ( U _  - (1 - U+ + q)) 

<~ -p ' ( t )  f l -  qt + Vx . (a(x) Vxq) + b(x) . Vxq 

+ C e x p { - Z [ k ,  x - c ( k )  t - p ( t ) ]  } + C(1 - U .  + q) 

<<. - p ' (  t) f l -  q, + V x . (a(x) Vxq) + b(x) . Vxq 

+ C exp{ - 2 [ k - x -  c(k) t -  p(t)] } + Cq (3.79) 

Now choose p(t) to satisfy 

-p ' ( t )  fl+ C Ilql] o~ = 0  (3.80) 

By Lemma 3.3 (with the required initial data given shortly), we get 

p'(t) = K Ilqll L~ (3.81) 

p( t )=o( t )  as t ~ o o  

where K - C / f l  is independent of p. 
Let us prove (3.72). Consider the function 

G ( t ) -  K ;o I[ql[ L~o(s)ds + c(~) t 

- sup K IlqllL~(s)ds+ t (3.82) 
tE [0, to] 

where to is a number such that if t/> to, then 

G'(t) = K  Ilq[lL~(t) + f ~ <  0 

Since JlqllL| --* 0 as t ~ co, such to exists. Therefore, a( t )  ~< 0 for all t/> O. 
Let 

m o - - s u p  [Kf~[[q[[L~o(s)ds+C(~)t] 
t ~  EO, t0] 

Then 

' >~ c ( k )  t 
- g fo II qll Lo~(s)  d s  ~ ~ - m o  Vt/> 0 (3.83) 
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It follows that 

- - p ( t ) - -  c ( k )  t = - K Ifqfl ~ ( s )  d s - p ( O )  - c ( k )  t 

>_ c(k) t _  
"1 2 mo-- p(O)-  c(k) t 

c(k) t 
- 2 m o - p ( O )  (3.84) 

= - e  exp 7 Ik.x] 

+ C e x p { - 2 [ k . x - c ( k )  t - p ( t ) ] } ,  Vk.x>~O (3.85) 

By our choice of 7, we see that 

exp ( -  7 [k .xl) ~> e x p ( - 2 k - x )  

In view of (3.84) 

N[ul] <~ exp[ - 2 ( k .  x)] 

~< e x p [ - 2 ( k . x ) ]  exp [ ~  1 ( - e+Cexp{2[mo+p(O)]} )  

~<0 

if -p (0 )  is large enough. The case k. x ~< 0 can be shown in a similar way. 
Thus, letting ~l(t) and ql be no less than the larger of the p's and q's of the 
two cases, we have shown that ut is a subsolution; the left-side inequality 
of (3.62) holds if u t can be fit to the initial data. 

If [k.x[ ~ L ,  choose ql(0, x ) = q ~ =  1 - 0 - t / ;  then by (3.61) 

U +  ( k - x  - 41(0):, x )  -~- g ( - k .  x - ~1(0)~, x )  - 1 - ql(O, x) ~ 1 - ql(O, x) 

<<. 0 + rl <~ Uo(X) (3.86) 

+ C e x p { - 2 [ k - x - c ( k )  t - p ( t ) ] }  

Since mo is a constant independent of p(0), we arrive at (3.72) by setting 
m = - m o - p ( O  ). With the above choice of p(t), both (3.79) and (3.77) 
imply 

N[ul] <~ - ~  e x p ( - ~ o t - ~  [k.x]) 
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If Ik .xl >~M-M(~I(O),  tl), then 

U + + U  - 1 - q ~ ( O , x ) ~ < C e x p [ - 2 1 1 k . x - ~ l ( O ) [ l  

+ C exp [ -22  Ik-x + ~1(0)1 ] - q~(O, x) 

<<. 0 <<. Uo(X) (3.87) 

where 2 i>0 ,  i =  1, 2, are constants, and q~(O, x ) > 0  is easily defined to 
2 1 decay slower than exponential but faster than an L (Rk.x) function, i.e., 

ql(O, x ) e L 2 n L ~ ( R ~ . x ) .  So ql(0, x) satisfies the conditions in Lemmas 
3.2-3.3 ([whose proofs are easily modified for data in L2c~L~ 
Now, if L > M, ut is a subsolution. The proof is complete. 

Remark 3.1. In Propositions 3.3 and 3.4, the condition f ' ( 1 ) < 0  is 
only used to ensure the existence of traveling waves. The proofs only need 
the fact that traveling waves that satisfy monotonicity and Proposition 2.1 
exist. For example, such traveling waves are shown to exist in Xin (27~ for 
a slightly different reaction-diffusion equation; however, uniqueness is 
not known without assuming f ' ( 1 ) < 0 .  Besides implying a propagation 
theorem, Proposition 3.3 also provides an indirect proof of the uniqueness 
of the traveling wave speed. 

Remark 3.2. During the preparation of our work, we received the 
preprint of Roquejoffre, (22~ where different subsolutions and supersolutions 
are constructed for the combustion model of Berestycki et aL (8'9) In the 
combustion case (or case B in ref. 22), the construction of ref. 22 requires 
the initial data to decay by a particular exponential rate and the assump- 
tion f ' ( 1 ) < 0 .  It also depends more on the structure of traveling wave 
profiles near infinities. The result of ref. 22 is stronger than ours here in that 
the functions q(t, x) decay exponentially in time and that the ~(t) do not 
grow in time. 

As a consequence of Propositions 3.2-3.4, we have: 

T h e o r e m  3.1 (Large-Time Wavefront Propagation). Consider the 
reaction-diffusion equation (1.1) with initial data u 0 either frontlike or 
pulselike, and assume that the conditions in Propositions 3.1-3.4 hold. Let 
s e R 1. Then: 
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I. For frontlike data along direction k 

lim u(t, skt)=~ 1 if s>c(k) 
, ~  (0 if s< c ( k )  

II. For pulselike data along direction k 

lim u(t, skt)=~ 1 if c(k)<s< -c(-k) 
, ~  (0 if s<c(k) or s > - c ( - k )  

Remark 3.3. Theorem 3.1 holds also for Lipschitz-continuous 
combustion nonlinearity. We can always approximate it from above and 
below with C 1 combustion nonlinearities. The solutions of the Cauchy 
problem with the same initial data and these approximate nonlinearities 
also bound the solution under the Lipschitz-continuous nonlinearity from 
above and below. Since the traveling waves in the approximate problems 
have speeds approaching that of the traveling wave in the Lipschitz- 
continuous combustion nonlinearity, we conclude. 

4. AN E X A M P L E  OF Q U E N C H I N G  

In this section, we show that quenching occurs in the one-dimensional 
bistable reaction-diffusion equations with periodic coefficients when the 
variation of the coefficients from their mean values are large enough for a 
given nonlinearity. In other words, traveling wave solutions cease to exist, 
and stationary solutions exist instead. We only consider a case where 
perturbation analysis is available. 

Let us consider the problem 

(a(x) Ux)x + 112f(u) = 0 

u((-ov)=0, u(+oo)=0, u(0) = 1/2 
(4.1) 

where a(x)= 1 + 62al(x), 161 ~ 1, 2 e R 1, and aa(x) is a smooth 1-periodic 
function; f (u )=u(1 -  u)(u-�89 3). We will look for a solution to (4.1) 
when [3[ ~ 1 for suitable/~, 2, and al(x ). 

Write u = q~U(x) + 6v(x) and f(u) =fo(u)  + 5u(1 - u), where fo(u) = 
u ( 1 -  u)(u-�89 and q~U(x) is the known solution of 

~o.\ + ~ f o ( ~ )  = o 

~o"(-~)=o, ~o~(+~)=1, ~o.(o)= �89 
(4.2) 
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Moreover,  r O, ~oU(x)= (/01(~x), ~01(x ) being the solution to (4.2) with 
u - -  - -  ,u g =  1, and q ~ ( x ) - ~ o z ( x ) .  Substituting v for u in (4.1) gives 

((1 + ~,a l ) )x  (~Ox ~ + ~ x )  + (1 + ~2al)(q~x~x + ~Vxx ) 

+ p 2 f o ( ~ O U + a v ) + l ~ z s ( 1 - ~ o ~ ' - S v ) ( ~ o " + 6 v ) = O  (4.3) 

Using (4.2), we simplify (4.3) to 

62a,.x(~o u + 6vx) + 5vx~ + 62ax(Cp~xx + 6 v ~ )  + [A 2 (~1) f 'o(q~ ~) 

#2 
+ ~- f~;(q~')(3v) 2 - / z  2(fiv) 3 + I~25(1 - q~Z - 6v ) (c f '  + fir) = 0 

o r  

o r  

Vxx + ~a1(99~xx + (3Vxx) + 2a~,x(~p~ + bye) + /~2 f~ (9"  ) v 

51s v2f~(~o u) - J/262U3 q- #2(1 -- ~0 u -- fiV)(Cp ~ + 6V) = 0 +-2- 
,u Vxx + #2f~(q~ u) v - R = - 2(a  1 q~x)x - 26(a,  vx) x 

Pz6 vZf~'(q~ ~') + lt23Zv ~ - #2(1 - ~o ~ - 6v)(~p" + 6v) 
2 

(4.4) 

The operator  dx~- + #2f~(q~).  has one-dimensional null-function qo~ > 0. 
So to invert it, the right-hand side of (4.4) must satisfy the solvability 
condition 

0 = d R~I Rq)  gx dx  (4.5) 

We choose ;t so that (4.5) holds. Since 
1 2 

fR  1 /~2(1 - q~'u) 'u /* f0  

(4.5) can be written as 

f. f. - 2  ( a t ~ o ~ ) x q , ~ d x - a 2  ( a ~ v x ) x ~ x d x  
1 1 

fR / = #262 1 v2f~176 

+ 6 JR1 [#26v 3 q~ + #2v( 1 _ qou) qo~ - #2v(~o~ + by) 9 ~ ]  d x  (4.6) 
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For given v, (4.6) can be solved for 2 if 

, r ~ox) x dx r 0 (4.7) 

When (4.7) is satisfied, it is easy to see that Eq. (4.4) admits solution in 
HI(R 1) by the contraction mapping principle for some ,~=2(a,~) and 

= a(#), 16[ ~ 1. Now (4.7) is just 

f ,  (a~P~x)x q~: dx= - f , ,  

= -fR,  (4.8) 

exist b(x) We show that there 
[b(x) = al,x(x)] so that 

P P q) xx(al CP x) dx 

(((p~)2,] d x = l  
a~ \--2---ix 2 fRJ (~~ al,x dx 

a mean-zero 1-periodic function 

2 = 2 0 ~ (0, 1) such that 

fR1 ((Pl'x(X))2 ei~~ dx ~ 0 (4.13) 

Finally, we choose # = 1/2o and see from (4.11)-(4.13) that (4.7) holds with 
this value of # and a~(x)= sin x. To summarize, we have: 

f R~ ((P"x)2 b(x) dx r 0 (4.9) 

if # is chosen large enough. More specifically, we show that 

fR~ (q~)2 cos x dx -r 0 (4.10) 

Since ~o~ is an even function, (4.10) is the same as 

fR 1 (~o~x)2 eiX dx ~O (4.11) 

whose left-hand side is equal to 

fRl122(~P1,x(#X))2eiXdx=#fRa(~Ol,x(X))2eiX/Udx (4.12) 

Now ((pl,x(X)) 2 > 0  and decays exponentially to zero at infinities, and its 
Fourier transform is smooth and positive at zero. So there exists 
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Proposition 4.1. There are positive numbers /2>0 and 
80 = 80(#)r 0 such that if 8 e (0, 8o), there exists a nonzero real number 
`;1=,;1(8,/2) so that Eq. (4.1) with a ( x ) = l  + 8 ' ; l s i n x  admits a solution 
satisfying all the boundary conditions. 

Proof. The existence of solutions follows from our discussion above, 
and since the homogeneous problem [i.e., a(x) = 1, 8 r 0] has no stationary 
solution taking zero and one at infinities, ,;1 ~ 0. 

R e m a r k  4.1. The proposition above implies that Eq. (4.1) also has 
a solution satisfying u l ( - o e ) =  1, u l (0)= 1/2, and u l ( ~ ) = 0 .  

R e m a r k  4.2. The periodicity condition on a(x) is not essential. 
One can find a smooth nonperiodic function fi(x) so that 

IR* (~~ ~x dx ~ O 

This means that quenching is only related to the degree of inhomogeneities. 
In Proposition 4.1, 21 may be rather small in absolute value, but already is 
large enough compared to the degree of inhomogeneity causing quenching 
for the given nonlinearity, which is very close to the derivative of a potential 
with two equal wells. 

Due to the fact that solutions of (4.1) satisfy the maximum principle, 
we have: 

Corollary 4.1. Under the conditions of Proposition 4.1, Eq. (4.1) 
does not have the wavefront propagation phenomenon; in particular, it 
does not admit traveling wave solutions. 

Remark 4.3. Note that Proposition 4.1 holds when a (x )=  
1 +821 sin x for 21 S 0  and ;̀1 =21(8,/2). If we further decrease 121 for 
fixed 8, then by Theorem 2.2, 320>0 such that if I`;[ e(0, `;0), traveling 
wave solutions exist. What happens for [';L e (`;o, I`;11), and I`;I ~ ([`;11, oe)? 
We expect that for ,; > 0 there is a single transition point , ;*> 0 such that 
if `; e (0, 2*), then traveling waves exist, and if 2 >~ ,;*, stationary solutions 
exist and waves are quenched. That the nonexistence domain is closed 
follows from Xin. (28) We observe this type of transition in our numerical 
computations to be presented in the next section. The case ,; < 0 is similar. 

5. N U M E R I C A L  RESULTS ON Q U E N C H I N G  

In this section, we present some numerical results on quenching in the 
parameter regime away from that of the example in Section 4. 
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We use an implicit second-order finite-difference method to calculate 
the solutions of Eq. (4.1) with frontlike initial data. The spatial domain is 
[ - N ,  N ] ,  and boundary conditions are u ( - N )  = 0, u ( N ) =  1. To minimize 
boundary effects, we put a small parameter  e = 0.25 in front of the diffusion 
term, 1/e = 4 before the reaction term, and choose a steep front as initial 
data. The example we show here is 

u, = 0.25[(1 + 6 sin 20x) u~]x + 4u(1 - u)(u - l~) 

u ( - 5 ) = 0 ,  u ( + 5 ) = l  
(5.1) 

We choose sin 20x instead of sin x in the coefficient to see some oscillation 
inside the transition layers of fronts. The adjustable parameters are 
5e (0 ,  1), which measures the degree of inhomogeneity, and #e (0 ,0 .5 ) ,  
which measures how close f is to the derivative of an equal well potential. 

Let us fix /~ =0.365. When we set 5 = 0.96, Fig. 1 shows that wave- 
fronts form and propagate to the left from the initial profile centered at 
x = 3. We plot the history of propagation every 8 unit time intervals up 
to t = 80. We observe the steady propagation of wiggling wavefronts (as 
opposed to the monotone wave profile in the spatially homogeneous case). 
Increasing the spatial domain or the computation time does not change the 
picture. Then we tune up c5 to 0.97; Fig. 2 shows that the steady front 

Fig. 1. 
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Fig. 2. 
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Fig. 3. 

1.0 , l r r , I ' I t~ r r T , I --[~- ' ' 

.9 

.B 

7 

.6 

5 

4 

3 

21 

.1 

x 

Plot of solutions of Eq,(5.1) with ~t=0,365, 6=0 .98  for t=4i, i = 0 ,  1,..., tO 
Time step = 0.025, spatial step = 0.05. 



Reaction-Diffusion Propagation in Periodic Media 921 

propagat ion  still persists, but  with a slower speed. Next, we tune up 5 
further to 0.98; Fig. 3 shows that  the front forms and starts to move to the 
left, but  finally stops near x = 2, where quenching occurs. The total time in 
Fig. 3 is t = 40, and the solutions are plotted every 4 unit time intervals. To 
make sure that  we reach the steady state, we run up to t = 80, and find the 
same quenching location, as shown in Fig. 4. When  we increase 6 above 
0.98, quenching remains, which is seen in Fig. 5 with 5 = 0.99. The same 
thing happens for other values of  5 e (0.98, 1). This confirms what we 
expected on the nonexistence interval of  traveling waves at the end of the 
last section. Figure 6 illustrates a more  remarkable appearance of  quench- 
ing, where waves are localized amazingly close to the initial data, which 
is centered at x = 0. The parameters  there are kt = 0.43, 5 = 0.96, the total 
running time is t = 40, and the solutions are drawn every 4 unit time 
intervals. 

The quenching phenomenon  here bears a lot of  resemblance to the 
localization in r andom Schr6dinger operators,  a l though the former occurs 
for the bistable nonlinearity already in periodic media, while the latter 
happens only in r andom media. What  is more  interesting is whether one 
has quenching (localization) for the combust ion  nonlinearity in r andom 
media. Quenching localization) in this case does not  happen in periodic 

Fig. 4. 
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media, as shown in Xin, (2s) yet the proof relies strongly on the periodicity 
assumption. It is thus conceivable that quenching may occur for flame 
fronts in random media. Also, what is quenching like in several space 
dimensions? We leave these issues to a future publication. 

6. HOMOGENIZATION AND GEOMETRIC OPTICS 

In this section, we scale Eq. (1.1) to a homogenization problem, give 
a formal geometric optics expansion, and derive the effective wavefront 
equation. 

Let us consider the large-space, large-time or the homogenization limit 
of u(t, x) of Eq. (1.1). Replacing x by x/~ and t by t/e and denoting the 
scaled u by u~(t, x), we see that u~(t, x) satisfies 

(6.1) 

which becomes the familiar-looking homogenization problem with rapidly 
oscillating coefficients as 8 --* 0. Due to the small parameter e before the dif- 
fusion term and the large parameter 1/e before the reaction term, this limit 
is also called the small-diffusion, fast-reaction limit. Notice that under the 
small-diffusion, fast-reaction limit, the transition layer of the wave profile is 
of O(e), which is the same order as that of the oscillation wavelengths in 
the coefficients. We look for a geometric optics expansion of the form 

u~(t,x)=U(} ~ x ) , , t , x  + h . o . t .  
8 

(6.2) 
cp(t, x, e) = rp0(t, x) + erpl(t, x) + h.o.t. 

where cp(t, x, e) is the phase variable and U is the amplitude. This is a 
hybrid expansion based on the usual geometric optics and the homogeniza- 
tion expansions. Substituting (6.2) into (6.1) gives to leading order 

(Vxg00Os +Vy)[a(y)(VxrpoSs +Vy) U] + b(y). (VxrPOSs +Vy) U 

- ~Oo,,Us+f(U)=O (6.3) 

where U = U(s, y, x, t), s = rp(t, x, e)/~, y = x/e, and x, t are slow variables. 
We see that (6.3) is just Eq. (2.1) for the traveling waves with k--VxgoO and 
c(k) = -gOo, t, which yields the "eikonal equation": 

goo,, + c(VxrPO) = 0 (6.4) 
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This is a Hamilton-Jacobi equation with c=c(k) as an effective 
Hamiltonian. The set {(t, x)l~00(t, x ) = 0 }  characterizes the effective 
wavefront separating the space-time regions where u" is near zero or one. 
In fact, Eq. (6.3) also defines the amplitude U, which is different from the 
usual geometric optics, where one gets an equation for the amplitude from 
the next-order terms of the expansion. It is straightforward to adapt 
Theorem 3.1 to one for the limit lim~_~o u~(t, x), which we leave to the 
reader. 

The geometric optics expansion in the KPP case is of the form 

u~(t'x)=exp I I(t'x'e!] + h ' ~  

I(t,x,e)=Io(t,x)+eIa (t,x,X)+h.o.t 
(6.5) 

which is very different from (6.2). The form (6.5) falls under the large- 
deviation framework, and I(t, x, ~) is just the large-deviation rate function. 
It turns out that Io(t, x) also satisfies a Hamilton-Jacobi equation and the 
effective wave speeds can be determined independently of the wave shapes. 
We refer to Freidlin (13'14/and Gartner and Freidlin (15) for the probabilistic 
aspects and Barles eta/. (2) (and references therein) for the PDE aspects of 
the theory. In contrast in the bistable or the combustion case, the wave 
speeds and wave shapes are coupled and have to be determined together. 

Finally, we remark that the limit lim,~0 u"(t, x) is a space-time almost 
everywhere strong limit due to the sharpening effects of wavefronts as e 
goes to zero, regardless of the presence of the oscillating coefficients. 
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